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1. Introduction

Multifunctions or multi-valued mappings have many applications in mathemat-
ical programming, probability, statistics, different inclusions, fixed point theorems
and many branches, and continuity of multifunctions have been generalized in
many ways. Many Mathematicians, see [10, 12, 13, 14, 21, 22], devoted a wide
research work on studying the generalized continuity of multifunctions. We will
study the case of multifunctions that maps each point in a fuzzy topological space
in the sense of Šostak ([16]) into an ordinary topological space.

In this paper, we introduce the concepts of upper and lower (α, β, θ, δ, I)-continuous
multifunctions and prove that if α, β are operators on the fuzzy topological space
(X, τ) in Šostak sense and θ, θ∗, δ are operators on the classical topological space
(Y,T), and I is a proper fuzzy ideal on X, then a multifunction F : X → Y is
upper (resp. lower) (α, β, θ u θ∗, δ, I)-continuous multifunction iff F is both of
upper (resp. lower) (α, β, θ, δ, I)-continuous and upper (resp. lower) (α, β, θ∗, δ, I)-
continuous multifunction. Many generalized forms of upper and lower continuity
have been studied in the literature. The properties which are mentioned may be
determined by certain structures, such as the
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case in supra fuzzy topology [6]. Ideal topological and fuzzy topological spaces
have been studied by Acharjee and Tripathy [2], Tripathy and Acharjee [19], Tripathy
and Ray [17, 18], Tripathy and Sarma [20] and Abbas and Ibedou in [1].

2. Preliminaries

Throughout this paper, X refers to an initial universe, 2X denotes the power
set of X, IX denotes the set of all fuzzy sets of X, λc(x) = 1 − λ(x) ∀x ∈ X (where
I = [0, 1], I0 = (0, 1]). Two fuzzy sets λ, µ ∈ IX are called quasi-coincident, denoted
by λ q µ, if there exists a x ∈ X such that λ(x) + µ(x) > 1.

As applications, α, β, idX : IX
× I0 → IX are fuzzy operators on (X, τ) and θ, δ, idY :

2Y
→ 2Y are operators on (Y,T).
Recall that a fuzzy ideal I on X is a map I : IX

→ I that satisfies the following
conditions:

(1) λ ≤ µ ⇒ I(λ) ≥ I(µ),
(2) I(λ ∨ µ) ≥ I(λ) ∧ I(µ).

Also, I is called proper if I(1) = 0 and there exists µ ∈ IX such that I(µ) > 0.
Define the fuzzy ideal I◦ by

I◦(µ) =

{
1 at µ = 0,
0 otherwise

Let (X, τ) be a fuzzy topological space due to Šostak [16] and (Y,T) a classical
topological space. The fuzzy closure and the fuzzy interior of any fuzzy set λ
in (X, τ) will be denoted by clτ(λ, r) and intτ(λ, r) for any λ ∈ IX, r ∈ I0 while the
closure and the interior of any set A ∈ 2Y will be denoted by T-cl(A) and T-int(A)
respectively.

A fuzzy set µ ∈ IX is called r-fuzzy strongly semi-open [8] (resp. r-fuzzy preopen
[8] and r-fuzzy preclosed [8]) if and only if

µ ≤ intτ(clτ(intτ(µ, r), r), r) ( resp. µ ≤ clτ(intτ(clτ(µ, r), r), r) and µ ≥ clτ(intτ(µ, r), r))

while

s s clτ(µ, r) =
∨
{λ : λ ≤ µ and λ is r − fuzzy strongly semi-open},

s pre intτ(µ, r) =
∨
{λ : λ ≤ µ and λ is r − fuzzy semi-preopen}

and
pre clτ(µ, r) =

∧
{λ : λ ≥ µ and λ is r − fuzzy preclosed}.

Also, A ⊆ Y is semi-closed ([9]) if A ⊇ T-int(T-cl(A)) while T-s cl(A) =
⋂
{B : A ⊆

B and B is semi-closed}.

Let us define the fuzzy difference between two fuzzy sets as given in [7]:

(λ ∧̄ µ) =

{
0 if λ ≤ µ,
λ ∧ µc otherwise.

Consider the family Ω denotes the set of all fuzzy subsets of a given set X
satisfying the following condition: ∀λ, µ ∈ Ω, λ ≤ µ or µ ≤ λ ([7]).

2
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Note that: For each λ, µ, ν ∈ Ω, we have:
(1) ν ∧̄ (λ ∧ µ) = (ν∧̄λ) ∨ (ν ∧̄ µ),
(2) (λ ∨ µ) ∧̄ ν = (λ ∧̄ ν) ∨ (µ ∧̄ ν).

A mapping F : X→ Y is called a multifunction if for each x ∈ X, F(x) is a subset
in Y. The Upper and Lower inverse of a set A ⊆ Y are denoted by Fu(A) and Fl(A),
respectively. That is ([3]),

Fu(A) = {x ∈ X : F(x) ⊆ A} and Fl(A) = {x ∈ X : (F(x) ∩ A) , ∅}.

Also, a multifunction F : X → Y is called Upper (resp. Lower) semi-continuous if
Fu(B) (resp. Fl(B)) is open in X for every open set B in Y ([3]).

A mapping F : X → Y is called a fuzzy multifunction if for each x ∈ X, F(x) is a
fuzzy set in Y. The fuzzy upper inverse F+(λ) and the fuzzy lower inverse F−(λ) of
λ ∈ IY are defined as follows:

F+(λ) = {x ∈ X : F(x) ≤ λ} and F−(λ) = {x ∈ X : F(x) q λ}.

For A ⊆ X, F(A) =
∨
{F(x) : x ∈ A} and F−(λc) = X − F+(λ) for each λ ∈ IY ([13]).

Also, a fuzzy multifunction F : X → Y is called fuzzy lower (resp. upper) semi-
continuous if F−(λ) (F+(λ)) is open in X for every λ ∈ IY with τ(λ) ≥ r; r ∈ I0
[15].

Now, for a multifunction F : X→ Y and λ ∈ IX, let us define F(λ) as follows:

F(λ) =
⋃
{F(x) | λ(x) > 0}.

For any A ∈ 2Y, the upper inverse F+(A) and the lower inverse F−(A) are defined as
follows:

F+(A) = {λ ∈ IX : F(λ) ⊆ A} and F−(A) = {λ ∈ IX
| F(λ) ∩ A , ∅}.

For any A ⊆ Y, F−(Ac) = 1 ∧̄ F+(A).
Also, a multifunction F : X→ Y is called upper (resp. lower) semi-continuous if

F+(A) ≤ intτ(F+(A), r) (resp. F−(A) ≤ intτ(F−(A), r)) for each A ⊆ Y.

3. Upper and lower (α, β, θ, δ, I)-continuous multifunctions

The idea of this section is based on the results and definitions in [23]

Definition 3.1. A mapping F : (X, τ) → (Y,T) is said to be upper (resp. lower)
(α, β, θ, δ, I)-continuous multifunction if for every A ∈ 2Y with A ∈ T, for some r ∈ I0

I[α(F+(δ(A)), r) ∧̄ β(F+(θ(A)), r)] ≥ r

(resp. I[α(F−(δ(A)), r) ∧̄ β(F−(θ(A)), r)] ≥ r).

We can see that the above definition generalizes the concept of fuzzy upper (resp.
lower) semi-continuous multifunction when we choose α = fuzzy identity operator
on X, β = fuzzy interior operator on X, δ, θ = identity operators on Y and I = I◦.

Let us give a historical justification of the definition:
3
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(1) The concept of upper (resp. lower) almost continuous multifunction is
defined as: For every A ∈ 2Y, r ∈ I0 with A ∈ T, then

F+(A) ≤ intτ(F+(T-int(T-cl(A))), r) (resp. F−(A) ≤ intτ(F−(T-int(T-
cl(A))), r)).

Here, α = fuzzy identity operator, β = fuzzy interior operator, δ = identity
operator, θ = interior closure operator and I = I◦.

(2) The concept of upper (resp. lower) weakly continuous multifunction as:
For every A ∈ 2Y, r ∈ I0 with A ∈ T, then

F+(A) ≤ intτ(F+(T-cl(A)), r) (resp. F−(A) ≤ intτ(F−(T-cl(A)), r)).
Here, α = fuzzy identity operator, β = fuzzy interior operator, δ = identity

operator, θ = closure operator and I = I◦.
(3) The concept of upper (resp. lower) almost weakly continuous multifunction

is defined as: For every A ∈ 2Y, r ∈ I0 with A ∈ T, then
F+(A) ≤ intτ(clτ(F+(T-cl(A)), r), r) (resp. F−(A) ≤ intτ(clτ(F−(T-cl(A)), r), r)).
Here, α = fuzzy identity operator, β = fuzzy interior closure operator, δ =

identity operator, θ = closure operator and I = I◦.
(4) The concept of upper (resp. lower) strongly semi-continuous multifunction

is defined as: For every A ∈ 2Y, r ∈ I0 with A ∈ T, then

F+(A) ≤ intτ(clτ(intτ(F+(A), r), r), r)

(resp. F−(A) ≤ intτ(clτ(intτ(F−(A), r), r), r)).

Here, α = fuzzy identity operator, β = fuzzy interior closure interior
operator, δ = identity operator, θ = identity operator and I = I◦.

(5) The concept of upper (resp. lower) almost strongly semi-continuous multi-
function is defined as: For every A ∈ 2Y, r ∈ I0 with A ∈ T, then

F+(A) ≤ s s intτ(F+(T-s cl(A)), r) (resp. F−(A) ≤ s s intτ(F−(T-s cl(A)), r)).
Here, α = fuzzy identity operator, β = fuzzy strongly semi-interior oper-

ator, δ = identity operator, θ = semi-closure operator and I = I◦.
(6) The concept of upper (resp. lower) weakly strongly semi-continuous mul-

tifunction is defined as: For every A ∈ 2Y, r ∈ I0 with A ∈ T, then
F+(A) ≤ intτ(clτ(intτ(F+(T-cl(A)), r), r), r) (resp. F−(A) ≤ intτ(clτ(intτ(F−(T-

cl(A)), r), r), r)).
Here, α = fuzzy identity operator, β = fuzzy interior closure interior

operator, δ = identity operator, θ = closure operator and I = I◦.
(7) The concept of upper (resp. lower) semi-precontinuous multifunction is

defined as: For every A ∈ 2Y, r ∈ I0 with A ∈ T, then

F+(A) ≤ clτ(intτ(clτ(F+(A), r), r), r)

(resp. F−(A) ≤ clτ(intτ(clτ(F−(A), r), r), r)).

Here, α = fuzzy identity operator, β = fuzzy closure interior closure
operator, δ = identity operator, θ = identity operator and I = I◦.

(8) The concept of upper (resp. lower) almost semi-precontinuous multifunc-
tion is defined as: For every A ∈ 2Y, r ∈ I0 with A ∈ T, then

F+(A) ≤ s pre intτ(F
+(T-s cl(A)), r) (resp. F−(A) ≤ s pre intτ(F

−(T-s cl(A)), r)).
4
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Here, α = fuzzy identity operator, β = fuzzy semi-preinterior operator,
δ = identity operator, θ = semi-closure operator and I = I◦.

(9) The concept of upper (resp. lower) weakly semi-precontinuous multifunc-
tion is defined as: For every A ∈ 2Y, r ∈ I0 with A ∈ T, then

F+(A) ≤ clτ(intτ(clτ(F+(T-cl(A)), r), r), r) (resp. F−(A) ≤ clτ(intτ(clτ(F−(T-
cl(A)), r), r), r)).

Here, α = fuzzy identity operator, β = fuzzy closure interior closure
operator, δ = identity operator, θ = closure operator and I = I◦.

(10) The concept of upper (resp. lower) precontinuous multifunction is defined
as: For every A ∈ 2Y, r ∈ I0 with A ∈ T, then

F+(A) ≤ intτ(clτ(F+(A), r), r) (resp. F−(A) ≤ intτ(clτ(F−(A), r), r)).

Here, α = fuzzy identity operator, β = fuzzy interior closure operator, δ =
identity operator, θ = identity operator and I = I◦.

(11) The concept of upper (resp. lower) strongly precontinuous multifunction
as: For every A ∈ 2Y, r ∈ I0 with A ∈ T, then

F+(A) ≤ intτ(pre clτ(F
+(A), r), r) (resp. F−(A) ≤ intτ(pre clτ(F

−(A), r), r)).

Here, α = fuzzy identity operator, β = fuzzy interior preclosure operator,
δ = identity operator, θ = identity operator and I = I◦.

Definition 3.2. A mapping F : (X, τ) → (Y,T) is called an upper (resp. lower)
P-continuous multifunction iff for every A ∈ 2Y, r ∈ I0, with A ∈ T, we have

τ(F+(A)) ≥ r (resp. τ(F−(A) ≥ r)) such that A satisfies the property P.

Let θP : 2Y
→ 2Y be an operator defined as:

θP(A) =

{
A if A ∈ T and A satisfies the property P,
Y otherwise

Theorem 3.3. A map F : (X, τ)→ (Y,T) is upper (resp. lower) P-continuous multifunction
iff it is upper (resp. lower) (idX, intτ, θP, idY, I◦)-continuous multifunction.

Proof. Suppose that F is an upper P-continuous multifunction and let A ∈ 2Y, r ∈ I0
with A ∈ T.

Case 1. If A satisfies the property P,θP(A) = A, and then by hypothesis τ(F+(A)) ≥
r and F+(A) ≤ intτ(F+(A), r) = intτ(F+(θP(A)), r).

Case 2. A does not satisfy the property P, then θP(A) = Y, and thus
idX(F+(A), r) ≤ 1 = intτ(F+(θP(A)), r). That is, F is upper (idX, intτ, θP, idY, I◦)-
continuous multifunction.

Conversely, suppose that idX(F+(A), r) ≤ intτ(F+(θP(A)), r) for each A ∈ 2Y, r ∈ I0
with A ∈ T. Taking A satisfying the property P, then θP(A) = A, and thus F+(A) ≤
intτ(F+(θP(A)), r) = intτ(F+(A)). We conclude that τ(F+(A)) ≥ r and thus F is an
upper P-continuous multifunction.

For lower P-continuous multifunction, the proof is similar. �
5
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Definition 3.4. If γ and γ∗ are operators on Y, then the operator γ u γ∗ is defined
as follows:

(γ u γ∗)(A) = γ(A) ∩ γ∗(A) ∀A ∈ 2Y.

The operators γ and γ∗ are said to be mutually dual if γuγ∗ is the identity operator.

Theorem 3.5. Let (X, τ) be a fuzzy topological space, (Y,T) a topological space and I a
proper fuzzy ideal on X. Let α, β, β∗ : IX

× I0 → Ω be fuzzy operators on (X, τ) and δ, θ, θ∗

be operators on (Y,T). Then F : X→ Y is:
(1) upper (resp. lower) (α, β, θ u θ∗, δ, I)-continuous multifunction iff it is both

upper (resp. lower) (α, β, θ, δ, I)-continuous multifunction and upper (resp. lower)
(α, β, θ∗, δ, I)-continuous multifunction provided that for all λ, µ ∈ IX, r ∈ I0, we
have β((λ ∧ µ), r) = β(λ, r) ∧ β(µ, r).

(2) upper (resp. lower) (α, β u β∗, θ, δ, I)-continuous multifunction iff it is both
upper (resp. lower) (α, β, θ, δ, I)-continuous multifunction and upper (resp. lower)
(α, β∗, θ, δ, I)-continuous multifunction.

Proof. (1) If F is both upper (α, β, θ, δ, I)-continuous multifunction and upper
(α, β, θ∗, δ, I)-continuous multifunction, then, for every A ∈ 2Y, r ∈ I0, with A ∈ T,
we have

I[α(F+(δ(A)), r) ∧̄ β(F+(θ(A)), r)] ≥ r and I[α(F+(δ(A)), r) ∧̄ β(F+(θ∗(A)), r)] ≥ r,

and then

I[(α(F+(δ(A)), r) ∧̄ β(F+(θ(A)), r)) ∨ (α(F+(δ(A)), r) ∧̄ β(F+(θ∗(A)), r))] ≥ r.

But

(α(F+(δ(A)), r) ∧̄ β(F+(θ(A)), r)) ∨ (α(F+(δ(A)), r) ∧̄ β(F+(θ∗(A)), r))
= α(F+(δ(A)), r) ∧̄ (β(F+(θ(A)), r) ∧ β(F+(θ∗(A)), r))
= α(F+(δ(A)), r) ∧̄ β(F+(θ(A) ∧ θ∗(A)), r)
= α(F+(δ(A)), r) ∧̄ β(F+(θ u θ∗(A)), r).

That is, F is fuzzy upper (α, β, θ u θ∗, δ, I)-continuous multifunction.
Conversely; if F is upper (α, β, θ u θ∗, δ, I)-continuous multifunction, then

I(α(F+(δ(A)), r) ∧̄ β(F+(θ u θ∗(A)), r)) ≥ r.

Now, by the above equalities, we get that

I[(α(F+(δ(A)), r) ∧̄ β(F+(θ(A)), r)) ∨ (α(F+(δ(A)), r) ∧̄ β(F+(θ∗(A)), r))] ≥ r,

which implies that

I[α(F+(δ(A)), r) ∧̄ β(F+(θ(A)), r)] ≥ r and I[α(F+(δ(A)), r) ∧̄ β(F+(θ∗(A)), r)] ≥ r,

which means that F is both upper (α, β, θ, δ, I)-continuous multifunction and upper
(α, β, θ∗, δ, I)-continuous multifunction.

(2) Similar to the proof in (1).
The proof for lower continuity is typical. �

6



Ismail Ibedou, S. E. Abbas/Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

Let Φ be the set of all fuzzy operators on the fuzzy topological space (X, τ). Then
a partial order could be defined by the relation:

α v β iff α(λ, r) ≤ β(λ, r) for all λ ∈ IX, r ∈ I0.

Theorem 3.6. Let (X, τ) be a fuzzy topological space, (Y,T) a topological space and I a
proper fuzzy ideal on X. Let α, α∗, β, β∗ : IX

× I0 → IX be fuzzy operators on (X, τ) and
δ, θ, θ∗ : 2Y

→ 2Y are operators on (Y,T) and F : X→ Y is a multifunction.
(1) If β is a monotone, θ v θ∗ and F is upper (resp. lower) (α, β, θ, δ, I)-continuous

multifunction, then F is upper (resp. lower) (α, β, θ∗, δ, I)-continuous multifunc-
tion,

(2) If α∗ v α and F is upper (resp. lower) (α, β, θ, δ, I)-continuous multifunction, then
F is upper (resp. lower) (α∗, β, θ, δ, I)-continuous multifunction,

(3) If β v β∗ and F is upper (resp. lower) (α, β, θ, δ, I)-continuous multifunction, then
F is upper (resp. lower) (α, β∗, θ∗, δ, I)-continuous multifunction.

Proof. (1) Since F is upper (α, β, θ, δ, I)-continuous multifunction, then for every
A ∈ 2Y, r ∈ I0 with A ∈ T, it happens that

I[α(F+(δ(A)), r) ∧̄ β(F+(θ(A)), r) ≥ r].

We know that θ v θ∗, and then θ(A) ⊆ θ∗(A), and thus F+(θ(A)) ≤ F+(θ∗(A)) and
β(F+(θ(A)), r) ≤ β(F+(θ∗(A)), r). That is,

α(F+(δ(A)), r) ∧̄ β(F+(θ(A)), r) ≥ α(F+(δ(A)), r) ∧̄ β(F+(θ∗(A)), r).

Therefore,

I[α(F+(δ(A)), r) ∧̄ β(F+(θ(A)), r)] ≤ I[α(F+(δ(A)), r) ∧̄ β(F+(θ∗(A)), r)],

which means that F is upper (α, β, θ∗, δ, I)-continuous multifunction.
(2) and (3) are similar.
The case of lower continuity is similar. �

Definition 3.7. An operator ∆ on a topological space (Y,T) induces another operator
(intT∆) defined as follows:

(intT∆)(A) = intT(∆(A)) ∀A ∈ 2Y. Clearly, intT∆ v ∆.

Theorem 3.8. Let α, β : IX
× I0 → IX be fuzzy operators on (X, τ) and δ, θ : 2Y

→ 2Y are
operators on (Y, τ) and I a proper fuzzy ideal on X. If F : X → Y is an upper (resp. lower)
(α, β, θ, δ, I)-continuous multifunction and

β(F+(A), r) ≤ β(F+(intT(A)), r) ( resp. β(F−(A), r) ≤ β(F−(intT(A)), r)),

for every A ∈ 2Y, r ∈ I0. Then F is upper (resp. lower) (α, β, intTθ, δ, I)-continuous
multifunction.

Proof. Let A ∈ 2Y, r ∈ I0 with A ∈ T. Then, we have that

I[α(F+(δ(A)), r) ∧̄ β(F+(θ(A)), r)] ≥ r.
Since β(F+(A), r) ≤ β(F+(intT(A)), r), then β(F+(θ(A)), r) ≤ β(F+(intTθ(A)), r). Hence,

I[α(F+(δ(A)), r) ∧̄ β(F+(intTθ(A)), r)] ≥ I[α(F+(δ(A)), r) ∧̄ β(F+(θ(A)), r)],

and thus, F is upper (α, β, intTθ, δ, I)-continuous multifunction. �
7
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Definition 3.9. Let (X,T) be a topological space. Then, an ordinary set K ∈ 2X is
called θ-compact if for each family {B j ∈ 2X : B j ∈ T} with K ⊆

⋃
j∈J

(B j), there exists

a finite subset J0 ⊆ J such that K ⊆
⋃
j∈J0

(θ(B j)).

Theorem 3.10. Let (X, τ) be a fuzzy topological space, (Y,T) a topological space, α :
IX
× I0 → IX a fuzzy operator on (X, τ) with λ ≤ α(λ, r) ∀λ ∈ IX, r ∈ I0 and δ, θ : 2Y

→ 2Y

are operators on (Y,T) with A ⊆ δ(A) ∀A ∈ 2Y. If F : X → Y is upper (resp. lower)
(α, intτ, θ, δ, I◦)-continuous multifunction and λ is a fuzzy compact fuzzy subset of X,
then, F(λ) is θ-compact in 2Y.

Proof. Suppose that the family {B j ∈ 2Y : j ∈ J, B j ∈ T} satisfies that
F(λ) ⊆

⋃
j∈J

B j. From F is upper (α, intτ, θ, δ, I◦)-continuous multifunction, then for

each j ∈ J, we have

α(F+(δ(B j)), r) ≤ intτ(F+(θ(B j)), r) ≤ F+(θ(B j)).

Then there exists µ j ∈ IX with τ(µ j) ≥ r such that

α(F+(δ(B j)), r) ≤ µ j ≤ F+(θ(B j)).

Since F+(δ(B j)) ≤ α(F+(δ(B j)), r) and B j ≤ δ(B j), then

λ ≤ F+(F(λ)) ≤
∨
j∈J

F+(B j) ≤
∨
j∈J

µ j.

From the fuzzy compactness of λ, there exists a finite subset J0 of J such that
λ ≤

∨
j∈J0

µ j. Then F(λ) ⊆
⋃
j∈J0

F(µ j) ⊆
⋃
j∈J0

F(F+(θ(B j))) ⊆
⋃
j∈J0

θ(B j), which means

that F(λ) is θ-compact. �

Corollary 3.11. Let (X, τ) be a fuzzy topological space and (Y,T) a topological space. Let
F : X → Y be an upper (resp. lower) weakly continuous multifunction and λ a compact
fuzzy subset of X, then F(λ) is an almost compact set in 2Y.

Proof. Take α = fuzzy identity operator, β = intτ, δ = identity operator, θ = closure
operator and I = I◦. Then the result is fulfilled directly from Theorem 3.10. �

Corollary 3.12. Let (X, τ) be a fuzzy topological space and (Y,T) a topological space. Let
F : X → Y be an upper (resp. lower) almost continuous multifunction and λ a compact
fuzzy subset of X, then F(λ) is a nearly compact set in 2Y.

Proof. Take α = fuzzy identity operator, β = intτ, δ = identity operator, θ = closure
operator on Y and I = I◦. Then the result follows from Theorem 3.10. �

4. Upper and lower ηη∗-continuous multifunctions

Let X and Y be nonempty sets and η∗ ⊆ 2Y be any collection of subsets of Y and
η : IX

→ I any function.

Definition 4.1. A function F : X → Y is said to be upper (resp. lower) ηη∗-
continuous multifunction if for r ∈ I0, η(F+(A)) ≥ r (resp. η(F−(A)) ≥ r) whenever
A ∈ 2Y with A ⊆ intη∗ (A).

8
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Remark 4.2. A generalized topology on a set Y ([5]) is a collection η∗ of subsets
of Y such that ∅ ∈ η∗ and η∗ is closed under arbitrary unions. Also, a generalized
fuzzy topology on a set X ([5]) is a function η : IX

→ I such that η(0) = 1 and
η(
∨
j∈J
µ j) ≥

∧
j∈J

(η(µ j)) ∀µ j ∈ IX. Observe that if Definition 4.1, η and η∗ are fuzzy

generalized topology on X and generalized topology on Y respectively, then we
just obtain the notion of upper (resp. lower) ηη∗-continuous multifunctions. In
[11], Maki et al., introduced the notion of minimal structure on a set Y, as the
collection mY of subsets of Y such that ∅ ∈ mY and Y ∈ mY. Also, in [24], Yoo et al.,
introduced the notion of fuzzy minimal structure on a set X, as mX : IX

→ I such
that mX(0) = mX(1) = 1. Now, if in Definition 4.1, η = mX and η∗ = mY, we obtain
the notion of upper (resp. lower) mXmY-continuous multifunctions.

Any collection η∗ of subsets of a set Y and any function η : IX
→ I determine in

a natural form an operator θη∗ : 2Y
→ 2Y and a fuzzy operator θη : IX

× I0 → IX

respectively, so that

θη∗ (A) =

{
A if A ∈ η∗

Y otherwise

and

θη(µ, r) =

{
µ if µ ∈ IX, r ∈ I0 with η(µ) ≥ r
1 otherwise

In the case that η is a generalized fuzzy topology on X and η∗ is a generalized
topology on Y, we obtain other operators (see [5]) that are important for its appli-
cations:

intη∗ (A) =
⋃
{B : B ⊆ A and B ∈ η∗},

clη∗ (A) =
⋂
{B : A ⊆ B and X − B ∈ η∗},

intη(λ, r) =
∨
{µ : µ ≤ λ and η(µ) ≥ r},

clη(λ, r) =
∧
{µ : λ ≤ µ and η(1 − µ) ≥ r}.

Note that: intη∗ v idY v θη∗ and intη v idX v θη. Similarly, in the case of a fuzzy
minimal structure mX (see [24]) and a minimal structure mY (see [4]), we have

intmY (A) =
⋃
{B : B ⊆ A and B ∈ mY},

clmY (A) =
⋂
{B : A ⊆ B and X − B ∈ mY},

intmX (µ, r) =
∨
{ν : ν ≤ µ and mX(ν) ≥ r},

clmX (µ, r) =
∧
{ν : µ ≤ ν and mX(1 − ν) ≥ r}.

Note that: intmX v idX v θη and intmY v idY v θη∗ . Also, intmY (A) = A if A ∈ mY
while intmY (A) ∈ mY whenever mY is a minimal structure with the Maki property
[11]. intmX (λ, r) = λ if mX(λ) ≥ r while mX(intmX (λ, r)) ≥ r whenever mX is a fuzzy
minimal structure with the Yoo property [24].
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The following results give the relationship between upper (resp. lower) ηη∗-
continuous multifunctions and upper (resp. lower) (α, β, θ, δ, I)-continuous mul-
tifunctions. We obtain some interesting properties of upper (resp. lower) ηη∗-
continuous multifunctions.

Theorem 4.3. Let X and Y be nonempty sets, η : IX
→ I, η∗ ⊆ 2X. If Y ∈ η∗, then

F : X → Y is upper (resp. lower) ηη∗-continuous multifunction iff F : X → Y is upper
(resp. lower) (θη, idX, θη∗ , idY, I◦)-continuous multifunction.

Proof. Suppose that F : X → Y is an upper ηη∗-continuous multifunction. Let
A ∈ 2Y, r ∈ I0, we have two cases:
Case 1. If A ∈ η∗, then θη∗ (A) = A and θη(F+(A), r) = F+(A). This follows that
θη(F+(idY(A)), r) = F+(A) = idX(F+(θη∗ (A)), r), and consequently

θη(F+(idY(A)), r) ≤ idX(F+(θη∗ (A)), r).

Case 2. If A < η∗, θη∗ (A) = Y, then
θη(F+(idY(A)), r) ≤ 1 = F+(Y) = idX(F+(θη∗ (A)), r). Hence,

θη(F+(idY(A)), r) ∧̄ idX(F+(θη∗ (A)), r) = 0

for all A ∈ 2Y, r ∈ I0. Thus, F is an upper (θη, idX, θη∗ , idY, I◦)-continuous multifunc-
tion.

Necessity; suppose that F is upper (θη, idX, θη∗ , idY, I◦)-continuous multifunction,
then θη(F+(idY(A)), r) ∧̄ idX(F+(θη∗ (A)), r) = 0 for all A ∈ 2Y, r ∈ I0 with A ∈ η∗. This
implies that θη(F+(A), r) ≤ F+(θη∗ (A)). Assume that there is B ∈ 2Y, r ∈ I0 such
that B ∈ η∗ and η(F+(B)) = 0. Then we obtain 1 ≤ F+(B). So, F+(B) = 1. Now our
hypothesis Y ∈ η∗ implies that η(F+(B)) ≥ r, r ∈ I0, and a contradiction. Therefore,
η(F+(A)) ≥ r whenever A ∈ 2Y, r ∈ I0 with A ∈ η∗, and thus F : X → Y is an upper
ηη∗-continuous multifunction. �

In the case that η is a generalized fuzzy topology, then the following result is
obtained.

Theorem 4.4. If η is a generalized fuzzy topology such that η(1) ≥ r, r ∈ I0 and η∗ ⊆ 2Y is
a family of subsets. Then F : X → Y is upper (resp. lower) ηη∗-continuous multifunction
iff F : X→ Y is upper (resp. lower) (idX, intη, θη∗ , idY, I◦)-continuous multifunction.

Proof. Suppose that F : X → Y is upper ηη∗-continuous multifunction. Let A ∈
IY, r ∈ I0. Then consider two cases:
Case 1. If A ∈ η∗, then θη∗ (A) = A and idX(F+(A), r) = F+(A) = intη(F+(A), r). This
follows that idX(F+(idY(A)), r) = F+(A) = intη(F+(θη∗ (A)), r), and consequently

idX(F+(idY(A)), r) ≤ intη(F+(θη∗ (A)), r).

Case 2. If A < η∗, θη∗ (A) = Y, since Y ∈ η∗, then

idX(F+(idY(A)), r) ≤ 1 = F+(Y) = intη(F+(θη∗ (A)), r).

So,
idX(F+(idY(A)), r) ∧̄ intη(F+(θη∗ (A)), r) = 0
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for all A ∈ 2Y, r ∈ I0. Hence, F is a fuzzy upper (idX, intη, θη∗ , idY, I◦)-continuous
multifunction.

Necessity; suppose that F is upper (idX, intη, θη∗ , idY, I◦)-continuous multifunc-
tion. Then

idX(F+(idY(A)), r) ∧̄ intη(F+(θη∗ (A)), r) = 0

for every A ∈ 2Y, r ∈ I0 with A ∈ η∗. This implies that

F+(A) ≤ intη(F+(θη∗ (A)), r) = intη(F+(A), r).

Assume that there is B ∈ 2Y, r ∈ I0 such that B ∈ η∗ and η(F+(B)) = 0. Then we obtain
F+(B) ≤ intη(F+(B), r), and thus F+(B) = intη(F+(B), r), and η(F+(B)) ≥ r, which is a
contradiction. Therefore, η(F+(A)) ≥ r whenever A ∈ 2Y, r ∈ I0 with A ∈ η∗, that is,
F : X→ Y is an upper ηη∗-continuous multifunction. �

The following corollaries are direct results.

Corollary 4.5. Let F : X → Y be a multifunction. If F is upper (resp. lower) mXmY-
continuous multifunction, then F is upper (resp. lower) (idX, intmX , θmY , idY, I)-continuous
multifunction whenever mY has the Maki property.

Corollary 4.6. Let η be a generalized fuzzy topology on X and η∗ a generalized topology on
Y such that Y ∈ η∗. Then, F : X→ Y is upper (resp. lower) ηη∗-continuous multifunction
iff F is upper (resp. lower) (idX, intη, intη∗ , idY, I◦)-continuous multifunction.

Corollary 4.7. Let F : (X,T1)→ (Y, τ) be fuzzy upper (resp. lower) semi-continuous mul-
tifunction and G : (Y, τ) → (Z,T2) be upper (resp. lower) semi-continuous multifunction.
Then the composition G ◦ F : (X,T1)→ (Z,T2) is an Upper (resp. Lower) semi-continuous
multifunction.
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89-ÔÇô103.

[17] B. C. Tripathy and G.C. Ray, Mixed fuzzy ideal topological spaces, Applied Mathematics and
Computations 220 (2013) 602–607.

[18] B. C. Tripathy and G.C. Ray, Weakly continuous functions on mixed fuzzy topological spaces, Acta
Scientiarum. Technology 36 (2) (2014) 331–335.

[19] B. C. Tripathy and S. Acharjee, On (γ, δ)-Bitopological semi-closed set via topological ideal, Proyec-
ciones J. Math. 33 (3) (2014) 245–257.

[20] B. C. Tripathy and D.J. Sarma, Generalized b-closed sets in Ideal bitopological spaces, Proyecciones
J. Math. 33 (3) (2014) 315–324.

[21] E. Tsiporkova, B. D. Baets and E. Kerre, A fuzzy inclusion based approach to upper inverse images
under fuzzy multivalued mappings, Fuzzy Sets and Systems 85 (1997) 93–108.

[22] E. Tsiporkova, B. D. Baets and E. Kerre, Continuity of fuzzy multivalued mappings, Fuzzy Sets
and Systems 94 (1998) 335–348.

[23] J. Vielma, E. Rosas, (α, β, θ, δ, I)-continuous mappings and their decomposition, Divulgaciones
Matematicas 12(1) (2004) 53–64.

[24] Y. H. Yoo, N. K. Min and J. I. Kim, Fuzzy r-minimal structures and fuzzy r-minimal spaces, Far
East J. Math. Sci. 33 (2) (2009) 193–205.

Ismail Ibedou (ismail.ibedou@gmail.com, iibedou@jazanu.edu.sa)
Benha University, Faculty of Science, Department of Mathematics, Benha 13518,
Egypt

S. E. Abbas (sabbas73@yahoo.com, saahmed@jazanu.edu.sa)
Sohag University, Faculty of Science, Department of Mathematics, Sohag 82524,
Egypt,

Jazan University, Faculty of Science, Department of Mathematics, Jazan 2097,
Saudi Arabia

12


	Generalized upper and lower continuous multifunctions . By 

